

Hex shaped fiber heads with built-in lenses

E32-L

Fiber Units with Build-in Lenses provide more stable detection and simpler, more reliable installation.

Hex-shaped models are now available with high-power built-in lenses for stable detection.

Achieve stable detection and easy onsite application.

Tool-friendly Construction for Reliable Installation

Wrench Does Not Contact Cable

OMRON's original tool-friendly construction allows the wrench to fit all the way onto the nut without coming into contact with the cable. The Fiber Unit is not accidentally damaged.

Easy Cable Routing

The cable opening is wide, so the cable can be routed easily.

Hex shape Provides Simplicity and Reliability

Top-view Type...

It is possible to snag the cable.

Nuts must be tightened at two places.

Reduces problems with snagging.

Install the Unit simply by holding the head

Full lineup of Hex-shaped Units! (Models without Lenses)

was possible for the wrench to hit the cable and damage the optical fiber, preventing stable

Coaxial Reflective Model

E32-C21N

There are nine receiver fibers.

Low-reflective objects or loose/inconsistently oriented objects can be detected more reliably.

* The conventional E32-C31N Fiber Unit has four receiver fibers.

A small spot lens can be attached

Diffuse-reflective Model

E32-D21N

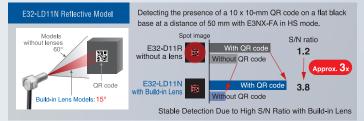
General-purpose M4 Hex-Shaped Models.

60°

Build-in Lens

Stable Detection

Due to High Power and Narrow Field of View


Long-term Stable Detection Even in Dusty Environments

The E32-LT11N's incident light level is approx. 10 times higher than that of the conventional Fiber Units.*1 High power means stable detection even in dusty and dirty environments. *1 OMRON Test Results

Stable Detection of Target Area Changes

The E32-LD11N's signal change (S/N ratio) is approx. 3 times higher than that of the conventional Fiber Units.*2 Because the target area is viewed with the narrow field of a 15° aperture angle, there is a greater difference in incident light levels and objects can be detected reliably.

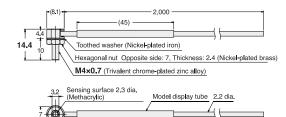
Reduce False Detection Caused by Scattered Light

False Detection is greatly reduced because the 15° aperture angle eliminates scattered light, even in tight spaces,

*3 The incident light levels are for illustration only

Build-in Lens Provides Simplicity and Reliability

Short head requires

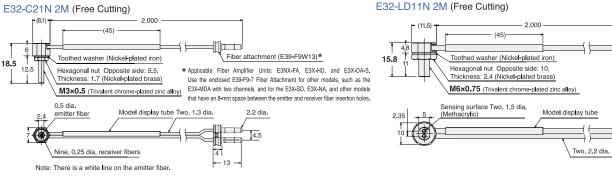

little space.

Through-beam Fiber Units

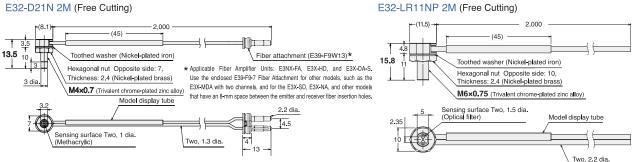
Specifications

Туре			Bending		Sensing dista	ance (mm)*1	Optical axis diameter		
Size	Aperture	Appearance (mm)		radius of cable E3X-HD		E3NX-FA		(minimum sensing object)	Models
Size	angle		(mm)	■GIGA =HS	Other modes	■GIGA =HS	Other modes	(mm)*3	
M4	Approx. 15°	Build-in Lens 14.4 M4	Flexible, R2	4,000*2	ST : 3,500 SHS: 920	4,000*2 3,450	ST : 4,000*2 SHS: 920	2.3 dia. (0.1 dia./0.03 dia.)	E32-LT11N 2M

Dimensions (mm) Tolerance class IT16 applies to dimensions in this data sheet unless otherwise specifie E32-LT11N 2M (Free Cutting)



Reflective Fiber Units/ Retro-reflective Fiber Units


Specifications

Specificat	10115									
Type			Bending		Sensing dis	stance (mm) *1	Optical axis diameter (minimum sensing object)	Models		
Sensing Size		Aperture angle	Appearance (mm)	radius of cable	E3X-HD				E3NX-FA	
memod		angle		(mm)	■GIGA =HS	Other modes	■GIGA =HS	Other modes	(mm)*3	
	M3		Coaxial 18.5	Flexible, R2	290	ST : 130	440	ST : 190		E32-C21N 2M
		Approx.	M3		90	SHS: 39	130	SHS: 39	(5 μm dia./ 2 μm dia.) (0.1 dia./ 0.03 dia.)	
Reflective M4	M4	60°	13.5 M4		840	ST : 350 SHS: 100	1,260	ST : 520 SHS: 100		E32-D21N 2M
	M6	Approx. 15°	Build-in Lens 15.8		840	ST : 350 SHS: 100	1,260	ST : 520 SHS: 100		E32-LD11N 2M
Retro-reflective for transparent object detection	M6	Approx.	Build-in Lens 8.5,44,	Flexible, R2	1,350	ST :1,200 SHS: 550	2,020	ST :1,800 SHS: 550	_	E32-LR11NP 2M + E39-RP1 (Optional reflector)

Dimensions (mm) Tolerance class IT16 applies to dimensions in this data sheet unless otherwise specified

E32-D21N 2M (Free Cutting)

- *1. The following mode names and response times apply to the modes given in the Sensing distance column. E3X-HD GIGA: Giga-power mode (16 ms), HS: High-speed mode (250 μs), ST: Standard mode (1 ms), and SHS: Super-high-speed mode (NPN output: 50 μs, PNP output: 55 μs)
 E3NX-FA GIGA: Giga-power mode (16 ms), HS: High-speed mode (250 μs), ST: Standard mode (1 ms), and SHS: Super-high-speed mode (30 μs)
 *2. The optical fiber is 2 m long on each side, so the sensing distance is 4,000 mm.
- *3. The values for the minimum sensing object are reference values that indicate values obtained in standard mode with the sensing distance and sensitivity set to the optimum values
- The first value is for the E3X-HD and the second value is for the E3NY-FA.

 * 4. The sensing distances for Reflective Fiber Units are for white paper. The sensing distances for the E32-LD11N 2M are for glossy white paper. Note. Objects with a high reflection factor may cause the Retro-reflective Fiber Sensor to detect reflected light as incident light. Detection may be unstable depending on the type of transparent object. Check suitability beforehand

Through-beam Fiber Units

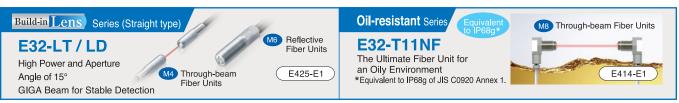
	Installation			Cable						Weight
Models	Ambient temperature	Tightening torque	Mounting hole	Bending radius	Unbendable length	Tensile strength	Sheath material	Core material	Emitter/receiver differentiation	(packed state) (g)
E32-LT11N 2M	-40 to 70°C	0.78 N·m	4.2 +0.5 dia.	R2	0	29.4 N	Polyethylene	Plastic	None	Approx. 40 g

Reflective Fiber Units/ Retro-reflective Fiber Units

Models	Installation			Cable						Weight
	Ambient temperature	Tightening torque	Mounting hole	Bending radius	Unbendable length	Tensile strength	Sheath material	Core material	Emitter/receiver differentiation	(packed state) (g)
E32-C21N 2M	-40 to 70°C	0.29 N·m	3.2 ^{+0.5} ₀ dia.	R2	0	9.8 N	Polyethylene	Plastic	White line on emitter cable	Approx. 30 g
E32-D21N 2M	-40 to 70°C	0.78 N·m	4.2 ^{+0.5} dia.		0	9.8 N	Polyethylene	Plastic	None	Approx. 30 g
E32-LD11N 2M	-40 to 70°C	0.98 N·m	6.2 +0.5 dia.	nz	0	29.4 N	Polyethylene	Plastic	None	Approx. 40 g
E32-LR11NP 2M	-40 to 70°C*	0.98 N·m	6.2 +0.5 dia.		0	29.4 N	Polyethylene	Plastic	None	Approx. 40 g

^{*} Ambient operating temperature of the recommended reflector (E39-RP1) is -40 to 60°C.

Accessories


Appearance	Models	Quantity	Remarks
	E39-F9W13	1	1.3-dia. Attachment Provided with applicable Fiber Units. Order this accessory separately if you lose or damage it.

Improved thin attachment. The protrusion was reduced to help you save space. You can also just insert the cable into this one-piece Attachment to save work.

Applicable Fiber Units: E32-C21N, E32-D21N

Applicable Fiber Amplifier Units: E3NX-FA, E3X-HD, E3X-DA-S series

Related Fiber Units

Introduction to Fiber Sensors

OMRON also provides many other types of Fiber Sensors.

Refer to Fiber Sensor Best Selection Catalog (E418).

Fiber Amplifier Units

			E3X-HD Series	E3NX-FA Series			
Output			1 output	1 or 2 outputs (depending on the model)			
	External input		Not supported	Supported or not supported (depending on the model)			
Fiber Amplifier	Response time*		50 μs (55 μs)/250 μs/1 ms/16 ms (Default: 250 μs)	30 μs (32 μs)/250 μs/1 ms/16 ms (Default: 250 μs)			
Unit specifications	Sensing distance (Giga-power mode)	E32-LT11N	4,000 mm	4,000 mm			
		E32-LD11N	840 mm	1,260 mm			
	Minimum E32-LT11N		0.1 mm dia.	0.03 mm dia.			

^{*} These are the response times for super-high-speed mode (SHS), high-speed mode (HS), standard mode (Stnd), and GIGA-power mode (GIGA). The value in parentheses for the super-high-speed mode is for a model with a PNP output.

OMRON Corporation Industrial Automation Company Tokyo, JAPAN

Contact: www.ia.omron.com

Regional Headquarters OMRON EUROPE B.V. Sensor Business Unit

Carl-Benz-Str. 4, D-71154 Nufringen, Germany Tel: (49) 7032-811-0/Fax: (49) 7032-811-199

OMRON ASIA PACIFIC PTE. LTD.

No. 438A Alexandra Road # 05-05/08 (Lobby 2), Alexandra Technopark, Singapore 119967 Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC

One Commerce Drive Schaumburg, IL 60173-5302 U.S.A Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON (CHINA) CO., LTD. Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road, PuDong New Area, Shanghai, 200120, China Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 2013 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

> Printed in Japan 1113(1013)

Cat. No. E437-E1-02